THE CYCLOADDITION REACTION OF 3,4-DIMETHYL-1-THIO-1-PHENYLPHOSPHOLE WITH TROPONE

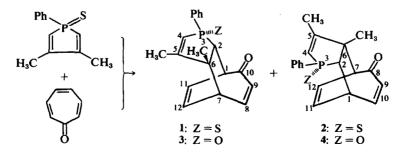
Y. KASHMAN and O. AWERBOUCH Department of Chemistry, Tel-Aviv University, Ramat-Aviv, Israel.

(Received in the UK 17 July 1972; Accepted for publication 31 August 1972)

Abstract - 3,4-Dimethyl-1-thio-1-phenylphosphole reacts, under elevated temperatures, with tropone to give two [4+2] isomeric adducts: *Endo-syn-5*,6-dimethyl-3-thio-3-phenyl-3-phosphatricyclo $[5.3.2.0^{2.6}]$ dodec-4,8,11-trien-10-one (1) and *Endo-anti-5*,6-dimethyl-3-thio-3-phenyl-3-phosphatricyclo $[5.3.2.0^{2.6}]$ dodec-4,9,11-trien-8-one (2). In addition to the *endo-exo,syn-anti* relationship the phosphorus configuration in 1, 2 and some derivatives was also elucidated by means of NMR-shift reagents and ${}^{2}J_{PH}$ coupling constants.

Various [4+2] and [6+4] cycloaddition reactions of tropones have recently been extensively studied. Thus cyclopentadiene,¹ for example, and some of its derivatives² form mainly [6+4] adducts with tropone at room temperature, whereas at elevated temperatures the $[4+2]^{2.3}$ adducts predominate.

Being interested in the behaviour of phospholes in cycloaddition reactions, the addition of 3.4dimethyl-1-thio-1-phenylphosphole⁴ to tropone⁵ was investigated. A solution of equimolar quantities of phosphole and tropone in methyl propylketone heated for 4–6 days at 100° under nitrogen gave two major products (1 and 2). (No reaction occurred under milder conditions, i.e. 25° - 60° for several days.)


Compounds 1 (m.p. $162^{\circ}-163^{\circ}$) and 2 (m.p. $195^{\circ}-196^{\circ}$) were separated on a neutral alumina column and were shown to be the 1:1 adducts of the phosphole and tropone by elemental analysis and mass spectra ($M^{\oplus} m/e$ 326). The IR spectra ($\nu_{\text{max}}^{\text{KBr}}$ 1650, 1600 and 1655, 1600 (C==C-C==O) for 1 and 2 respectively) indicated an $\alpha\beta$ -unsaturated CO group thereby cancelling out the possibility of a [6+4] cycloaddition reaction.

Six possible structures can be put forward for each one of the possible [4+2] adducts according either to the *exo-endo* configuration, the *syn-anti* relationship between the P-atom and the C=O group, and the two possible P-configurations. The decision as to which possible isomer was obtained, was provided by NMR data (Table 1a, b; Fig 1) recorded on 100 and 60 MHz instruments. The signal assignments in the NMR spectra of 1 and 2 were based on the chemical shifts but mainly on the proton-proton coupling constants deduced from a double irradiation experiment (on the 100 MHz instrument, see Table 1a, b), and on the phosphorus-proton coupling constants obtained by a heterospin decoupling experiment (on the 60 MHz instrument).

These NMR data proved unequivocally that compounds 1 and 2 are indeed the products of a $[4+2]\pi$ cycloaddition reaction in which the tropone was the diene and the phosphole the dienophile.

The difference between the two isomers (1 and 2) originates from the phospholenic moiety; in one isomer, the P-atom is *syn* in respect to the CO group, whereas in the other it is in the *anti* configuration.

The *endo* geometry suggested for the phospholenic moiety in both 1 and 2 is based on the following three facts: (a) The very small H(1), H(2), vicinal coupling constants (0 and 1.5 Hz for 1 and 2 respectively). (b) The ${}^{3}J_{PH(1)}$ values (14 and 9 Hz for 1 and 2 respectively) fit the expected

												H _{9,10}	1	I	11-0	11-0
												H _{1.5} ***		I	2.0	2-0
ћ Н _{в.7}	7-41	8	7-48	m	7-45	E	7.50	E				H _{1.10}	1	I	0.6	0 .6
H _a Ph	7.76	mþ	7-66	dm	7-83	щþ	7-66	đ				H _{1,11}	7-0	0·2	8-0 8	0·8
H ₁₀			1		7.15	pp	7.15	þþ				H _{11,12} H _{1,12} ***	1·5	1:5	<u>•</u>	1.5
H	10.7	pp	7-02	pp			1					H _{11,12}	8-0	9.0 8	8-0	8-0
H ₁₂	6.41	ppp	6-45	ppp	6-04	ppp	6-06	ppp		4(H2)	(777)	H _{7.11} ***	1.5	2.0	1:0	1.5
H,,	6.18	ppp	6-30	ppp	6.68	ppp	6.72	ppp		unde 1–	Tonta	Н _{7,18} Н	7-0	7-0	7.0	7-0
H,	5.84	pp	5.85	pp	5.79	pp	5.80	pp		r Como		H _{7,8}	0.6	0. 6	1	1
H,	5-81	pp	5.95	þþ	5-81	pp	5-93	pp		Table 1b Counting Constants for Compounds 1-4(Hz)		H _{7,9} ***	2.0	2.0	I	1
H1	4-33	ddm	4·12	ddm	3.98	dm	3.81	щ		ine Cons		H _{8.9} I	11·0	11:0	١	I
H	3.50	ppp	3.50	ppp	3.66	pp	3.69	þþ		Count		$\mathrm{H}_{\mathrm{1,2}}$	0-0	0-0	1:5	1:5
H2	2-43	ď	2-37	p	2-63	pp	2.50	pp		ahle 1h		H3.4	1:5	1:5	1:5	1:5
c- <u>CH</u> 3	2.00	pp	2-03	þþ	2·02	pp	2:04	pp				3 <i>]</i> _{PHa} **	14-0	12.0	13-0	7-0
CH, C	l·33	s	·37	s	96	s	6 £:	ŝ				² / _{PH4}	26-0	22-0	26.0	22-0
d Ce	÷.		<u> </u>		-		-					² J _{PHs}	6.0	<u>6</u> 0	5.0	5.0
Compound C _e -CH ₃ C ₅ -CH ₃	1		•••		1		4					³ J _{PH1}	14-0	8:0	<u>.</u>	8·0
												*J _{PH} *	1.5	1:S	1:5	<u>:</u>

Table 1a. Chemical Shifts for Compounds 1-4 (δ ppm)

m n 4 ---

Compound

*J_{PCGR-CBr}. **J between the phosphorus nucleus and the α-protons of the Ph-P. *** Allylic coupling constant.

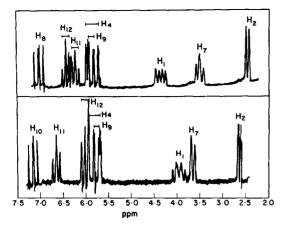


Fig 1. Partial NMR spectrum of compounds 1 and 2.

values for this configuration, assuming a Karpluslike relationship⁶ between the P—C—C—H(1) dihedric angle and ${}^{3}J_{PH(1)}$. (c) The compatibility of the $\Delta\delta$ values obtained by complexation with Eu(fod)₃ to d (distance) correlations with the *endo* geometry, as opposed to the *exo* one (Table 2). The $\Delta\delta$ to d correlation, was based on the assumption that the complexation occurs on the carbonyl site.⁸

The *endo-exo* and *syn-anti* relationship having been assigned, the question of the P-configuration had to be settled.

Oxidation of 1 and 2, by 30% H₂O₂ in chloroform-acetone solution yielded the phosphine oxides 3 and 4 respectively. Compounds 3 (m.p. $177-178^{\circ}$) and 4 (m.p. 193-194°) (mass spectra M^{\oplus} m/e 310) showed strong P=O absorptions, (ν_{max}^{KBr} 1190, 1170 for 3 and 1190, 1165 cm⁻¹ for 4) as expected. The NMR spectra were very similar to those of 1 and 2 apart from the chemical shifts of the H(1), H(2) protons, these being directly influenced by the P=S groups' anisotropy.* (Table 1a). This similarity indicates that the configuration of the P atom in both 3 and 4 remains unchanged, as would be expected during such an oxidation process.⁹

Reduction of 3 with trichlorosilane (HSiCl₃) in dry benzene yielded the corresponding phosphine 5, (mass spectra M^{\oplus} m/e 294; disappearance of the absorptions at 1190, 1170 cm⁻¹). In the NMR spectra (Experimental) the expected changes caused by the alteration of P(IV) to P(III)¹⁰ could be well observed. Of significance was the low ${}^{2}J_{PH(2)}$ value,^{11,12} from which we concluded that the P-configuration is such that the P-phenyl group in V is *cis* to the C—H(2) bond.

It was found¹¹ that ${}^{2}J_{PH(2)}$ is only slightly changed when either a Me or a Ph group is attached to the P atom. Thus it does not seem likely that an additional double bond (C(4)C(5)) in 5 should invert the observed J values. Furthermore, the fact that ${}^{2}J_{PH(2)}$ in 1, 2, and 5 are in the same order of magnitude (6; 6 and 3 Hz respectively, as compared to a value of *ca* 25 Hz expected for a <u>Ph-P-C-H(2)</u> *trans* relationship,¹¹ indicates that a conclusion can be drawn for the P-C-H angle even from the oxide or sulphide J-values.

The configuration of the P-atom in both 1 and 3 should be the same as in 5 because reduction of P=O with $HSiCl_3^{13}$ and oxidation⁹ of P=S to P=O with H_2O_2 both proceed with retention of configuration.

Table 2

Compound	Proton	đ _{endo} (Å) ^a	d _{exo} (Å) ^a	$\Delta \delta (ppm)^{\delta}$ $(M.R.)^{c}$		
1	C₅- <u>CH</u> ₃	6.9	5.6	0.5 (0.78)		
1	C ₆ CH ₃	4.6	5.7	0.85 (0.78)		
1	H.	6.8	4.7	0.72 (0.78)		
1	H ₂	3.2	4·2	2·55 (0·78)		
2	C ₅ -CH ₃	5.1	3.4	1.18 (0.84)		
2	$C_{6} \overline{CH}_{3}$	3.3	4.6	3.65 (0.84)		
2	H.	6.7	4.5	0.93 (0.84)		
2	H,	4.5	5.3	2.15 (0.84)		

 a d = The distance between the carbonyl oxygen atom and the proton.

 ${}^{b}\Delta\delta = \delta$ complexed $-\delta$ uncomplexed.

 $^{\circ}M.R. = [Eu(fod)_3]/[Substrate].$

Table 3

Compound	Proton	d _{anti} (Å) ^a	d _{syn} (Å) ^b	$\frac{\Delta\delta (\text{ppm})^c}{(M.R.)^d}$		
3	H ₂	3.2	2.6			
3	H_1	2.3	3.4	1.40 (0.15)		
3	Н	3.0	3.0	0.28 (0.15)		
3	Н	2.7	4-8	0.60 (0.15)		
4	H ₂	3.2	2.6	0.88 (0.16)		
4	H ₁	2.4	3.4	1.45 (0.16)		
4	H,	3.0	3.0	0.25 (0.16)		
4	Hi	3-0	5.0	1.45 (0.16)		

^ad anti = The distance between the phosphoryl O atom and the proton (The P==O possessing the *anti* configuration to the C-H(2) bond).

^bd syn = The distance between the phosphoryl O atom and the proton (The P==O possessing the syn configuration to the C-H(2) bond).

 $^{c}\Delta\delta = \delta$ complexed – δ uncomplexed.

 $^{d}M.R. = [Eu(fod)_3]/[Substrate].$

^{*}The anisotropic effect of P = S as opposed to P = O could be nicely observed in the comparison of 8-oxo-8phenyl-8-phosphabicyclo[3.2.1]octan-3-one with the 8thio analogue which showed that in the case of the P = Sa slightly stronger paramagnetic effect was present. Alteration of the P configuration on the other hand **completely changed the** whole spectra.

On the basis of the above conclusions and the similarity between the ${}^{2}J_{PCH(2)}$ value in 1 and 3 as well as in 2 and 4, the P-configuration in the latter pair should be the same as in the former.

The correlation between $\Delta\delta$ and d for complexes of 3 and 4 with Eu(fod)₃ has been examined, as has been previously shown by us,¹⁴ in phosphabicyclic compounds bearing both P=O and C=O groups, complexation takes place on the P=O group, as was also found in this case. From the $\Delta\delta/d$ correlation shown partially in Table 3, it seems that the Eu atom of the Eu(fod)₃ is not colinear with the P=O bond, nevertheless the $\Delta\delta$ values for particular pairs of protons which can be compared (Table 3) seems to be in accordance with the suggested P-configuration.

EXPERIMENTAL

M.ps were taken on a Unimelt Thomas and Hoover's Capillary m.p. apparatus and are uncorrected. IR spectra were recorded on a Perkin-Elmer Infracord model 337 spectrophotometer. NMR spectra were taken on a Varian HA-100 and Jeol JMN-C-60 HL spectrometers, for 5-10% soln in CDCl₃, containing TMS as an internal standard. Mass spectra were taken on an Hitachi Perkin-Elmer RMU-6 instrument, the samples being introduced directly into the ion source through a vacuum-lock, electron energy 70 eV.

3,4-Dimethyl-1-thio-1-phenylphosphole was prepared according to Mathey *et al.*⁴ Tropone was prepared from cyclohepta-1,3,5-triene by the method of Radlick.⁵

5,6-Dimethyl-3-thio-3-phenyl-3-phosphatricyclo[5.3.2. $0^{2.6}$]dodec-4,8,11-trien-10-one and 5,6-dimethyl-3-thio-3-phenyl-3-phosphatricyclo[5.3.2. $0^{2.6}$]dodec-4,9,11-trien-8-one, (1 and 2). A soln of 3,4-dimethyl-1-thio-1-phenyl-phosphole (2g) and tropone (0.97 g) in methyl propyl-ketone (15 ml), was refluxed for 4 days under N₂. After evaporating the solvent under reduced pressure, the obtained dark, viscose oil was chromatographed on a neutral alumina column (Woelm, grade 2). Elution with benzene-petrol ether (1:1) yielded pure 1 (1.0 g) and 2 (600 mg). Compound 1 was recrystallised from EtOA (white needles), m.p. 162-163°; $\nu_{\text{mgx}}^{\text{KBr}}$ 3030, 2950, 1650, 1630, 1600, 1470, 1430, 1380, 1270, 1160, 1100, 905, 870, 850, 830, 805, 760, 740, 725, 710, 690, 655, 505 cm⁻¹. (Found: C, 69.91; H, 5.46; P, 9.30; S, 10.06. C₁₀H₁₈OPS requires: C, 69.92; H, 5.87; P, 9.49; S, 9.82%).

Compound 2 (white cubic crystals) was recrystallised from EtOAc-ether, m.p. 195–196°; $\nu_{\rm mar}^{\rm KBr}$ 3025, 2930, 2880, 1655, 1625, 1600, 1475, 1430, 1380, 1315, 1290, 1270, 1170, 1140, 1090, 1025, 930, 910, 850, 780, 750, 725, 710, 695, 660, 600, 575, 505 cm⁻¹. (Found: C, 69-98; H, 5-61; P, 9-34; S, 10-04. C₁₉H₁₉OPS requires: C, 69-92; H, 5-87; P, 9-49; S, 9-82%).

5,6-Dimethyl-3-oxo-3-phenyl-3-phosphatricyclo[5.3.2. $0^{2.6}$]dodec-4,8,11-trien-10-one, (3). To a soln of 1 (0.75 g) in CHCl₃ (2 ml), a 30% H₂O₂ soln (1 ml) was added, followed by addition of acetone until the soln became homogenous. The mixture was stirred at room temp for 4 days (until completion of the reaction according to TLC), then chloroform (150 cc) was added and the soln was washed with 5% FeSO₄ aq until a negative KI test. After evaporation of the dried soln (Na₂SO₄), the product

(0.64 g) was recrystallised from EtOAc-ether (white plates), m.p. 177-178°; ν_{max}^{RBF} 3040, 2960, 2925, 1660, 1630, 1600, 1590, 1435, 1380, 1250, 1190, 1170, 1105, 900, 870, 845, 830, 810, 760, 740, 720, 700, 690, 680 cm⁻¹. (Found: M⁺ 310; C₁₈H₁₉O₂P requires: MW 310).

5,6-Dimethyl-3-oxo-3-phenyl-3-phosphatricyclo[5.3.2. $0^{2.6}$]dodec-4,9,11-trien-8-one, (4). Compound 2 (80 mg) was oxidized by 30% H₂O₂, under the same conditions described for the oxidation of 1 to 3, yielding a crystalyne product (70 mg), m.p. 193-194° (EtOAc-ether), ν_{max}^{KB3} 3060, 2960, 2920, 1660, 1635, 1610, 1590, 1440, 1380, 1250, 1190, 1165, 1140, 1090, 1030, 930, 900, 870, 850, 840, 745, 720, 710, 700, 690, 640 cm⁻¹. (Found: M⁺ 310; C₁₉H₁₉O₂P requires: MW 310).

5.6-Dimethyl-3-phenyl-3-phosphatricyclo[5.3.2.0^{2.8}]dodec-4.8.11-trien-10-one. (5). To a stirred soln of 3 (68 mg) in dry benzene (10 ml) an excess of HSiCl₃ (1.5 ml) was added in one portion. The mixture was stirred under N₂ at room temp for 1/2 hr and then refluxed for 2 hr. After cooling, N₂-purged water (5 ml) were added, causing the precipitation of a white solid. The mixture was filtered under N₂, yielding a turbide benzenic soln. The white solid was washed twice with 10 ml portions benzene. The combined benzenic soln was washed with small portions of 5% NaHCO₃aq, then water, dried (Na₂SO₄) and evaporated yielding white, viscose oily product (45 mg); ν_{\max}^{neat} 3020, 2960, 2920, 2860, 1660, 1635, 1600, 1535, 1385, 1260, 1100, 1085, 1020, 905, 810, 750, 740, 730, 670 cm⁻¹. (Found: M⁺ 294; C₁₉H₁₉OP requires: MW 294); δ 1·10s (C₆·CH₃); 1·85 dd (⁴J_{PH} = 1·5 Hz; ⁴J_{H4C3·CH3} = 1·5 Hz; C₅·CH₃); 2·23 d (³J_{PH} = 3 Hz; H₂); 3·35 dd* $(J_{H_{7.8}} = 9.0 \text{ Hz}; J_{H_{7.12}} = 7.0 \text{ Hz}; H_1); 3.90 \text{ m} (H_1); 5.38 \text{ dd}$ $(^2J_{PH} = 21 \text{ Hz}; H_4); 5.78 \text{ dd}^* (J_{H_{8.9}} = 11.0 \text{ Hz}; H_9);$ 6.13 dd* $(J_{H_{11,13}} = 8.0 \text{ Hz}; J_{H_1H_{11}} = 7.0 \text{ Hz}; H_{11}); 6.35 \text{ dd*}$ (H_{12}) ; 6.93 dd $(J_{H_{7.8}} = 7.0 \text{ Hz}; H_8)$; 7.28 m (Ph, 5H) ppm.

REFERENCES

- ¹R. C. Cookson, B. V. Braye, J. Hudec and A. Morrison, *Chem. Comm.* (1) 15 (1966); S. Ito, Y. Fujise, T. Okuda and Y. Inoue, *Bull. Chem. Soc. Japan* 39, 1351 (1966); S. Ito, K. Sakan and Y. Fujise, *Tetrahedron Letters* No. 33, 2873 (1970).
- ²K. N. Houk and R. B. Woodward, J. Am. Chem. Soc. **92**, 4145 (1970).
- ³H. Tanida, T. Yano and M. Veyama, *Bull. Chem. Soc. Japan* **45**, 946 (1972).
- ⁴F. Mathey and R. Mankowski-Favelier, *Bull. Soc. Chim. Fr.* 4433 (1970).
- ⁵P. Radlick, J. Org. Chem. 29, 960 (1964).
- ⁶C. Benezra and G. Ourison, *Bull. Soc. Chim. Fr.* 1825 (1966); C. Benezra, *Tetrahedron Letters* No. 51, 4471 (1969).
- ⁷Y. Kashman and O. Awerbouch, *Tetrahedron* **26**, 4213 (1970) and unpublished results.
- ⁸T. M. Ward, I. L. Allcox and G. H. Wahl, Jr., *Tetrahedron Letters* No. 46, 4421 (1971).
- ⁹N. De'ath, K. Ellis, D. J. H. Smith and S. Trippett, Chem. Comm. 714 (1971).
- ¹⁰J. B. Hendrickson, M. L. Maddox, J. J. Sims and H. D. Kaesz, *Tetrahedron* 20, 449 (1964).
- ¹¹J. P. Albrand, D. Gagnaire, M. Picard and J. B. Robert, *Tetrahedron Letters* No. 52, 4593 (1970).
- ¹²L. D. Quin and T. P. Barket, J. Am. Chem. Soc. 92, 4303 (1970).
- ¹³A. Lewis and K. Mislow, *Ibid.* 91, 7009 (1969).
- ¹⁴Y. Kashman and O. Awerbouch, *Tetrahedron* 27, 5593 (1971).

^{*}Broadened by allylic coupling.